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STFT Phase Retrieval: Uniqueness Guarantees
and Recovery Algorithms
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Abstract—The problem of recovering a signal from its Fourier
magnitude is of paramount importance in various fields of engi-
neering and applied physics. Due to the absence of Fourier phase
information, some form of additional information is required in
order to be able to uniquely, efficiently, and robustly identify
the underlying signal. Inspired by practical methods in optical
imaging, we consider the problem of signal reconstruction from
the short-time Fourier transform (STFT) magnitude. We first
develop conditions under, which the STFT magnitude is an almost
surely unique signal representation. We then consider a semidef-
inite relaxation-based algorithm (STliFT) and provide recovery
guarantees. Numerical simulations complement our theoretical
analysis and provide directions for future work.

Index Terms—Short-Time Fourier Transform (STFT), Phase
Retrieval, Super-Resolution, Semidefinite Relaxation.

I. INTRODUCTION

I N MANY physical measurement systems, the measurable
quantity is the magnitude-square of the Fourier transform

of the underlying signal. The problem of reconstructing a sig-
nal from its Fourier magnitude is known as phase retrieval [1],
[2]. This reconstruction problem is one with a rich history and
occurs in many areas of engineering and applied physics such as
optics [3], X-ray crystallography [4], astronomical imaging [5],
speech recognition [6], computational biology [7], blind chan-
nel estimation [8] and more. We refer the readers to [9]–[11]
for a comprehensive survey of classical approaches. Recent
reviews can be found in [12], [13].

It is well known that phase retrieval is an ill-posed problem
[14]. In order to be able to uniquely identify the underlying sig-
nal, various methods have been explored, which can be broadly
classified into two categories: (i) Additional prior information:
common approaches include bounds on the support of the sig-
nal [9]–[11] and sparsity constraints [17]–[24]. (ii) Additional
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magnitude-only measurements: popular examples include the
use of structured illuminations and masks [24]–[30], and Short-
Time Fourier Transform (STFT) magnitude measurements
[31]–[39].

We consider STFT phase retrieval, which is the problem
of reconstructing a signal from its STFT magnitude. In some
applications of phase retrieval, it is easy to obtain such mea-
surements. One example is Frequency Resolved Optical Gating
(FROG), which is a general method for measuring ultrashort
laser pulses [31]. Fourier ptychography [32]–[34], a technol-
ogy which has enabled X-ray, optical and electron microscopy
with increased spatial resolution without the need for advanced
lenses, is another popular example. In applications such as
speech processing, it is natural to work with the STFT instead
of the Fourier transform as the spectral content of speech
changes over time [35]. The key idea, when using STFT mea-
surements, is to introduce redundancy in the magnitude-only
measurements by maintaining a substantial overlap between
adjacent short-time sections. This mitigates the uniqueness and
algorithmic issues of phase retrieval.

In this work, our contribution is two-fold:
(i) Uniqueness guarantees: Researchers have previously

developed conditions under which the STFT magnitude
uniquely identifies signals (up to a global phase). However,
either prior information on the signal is assumed in order to pro-
vide the guarantees, or the guarantees are limited. For instance,
the results provided in [37] require exact knowledge of a small
portion of the underlying signal. In [39], the guarantees devel-
oped are for the setup in which adjacent short-time sections
differ in only one index. These limitations are primarily due to
a small number of adversarial signals which cannot be uniquely
identified from their STFT magnitude. Here, in contrast, we
develop conditions under which the STFT magnitude is an
almost surely unique signal representation. In particular, we
show that, with the exception of a set of signals of measure
zero, non-vanishing signals can be uniquely identified (up to a
global phase) from their STFT magnitude if adjacent short-time
sections overlap (Theorem III.1). We then extend this result
to incorporate sparse signals which have a limited number of
consecutive zeros (Corollary III.1).

(ii) Recovery algorithms: Researchers have previously devel-
oped efficient iterative algorithms based on classic optimiza-
tion frameworks to solve the STFT phase retrieval problem.
Examples include the Griffin-Lim (GL) algorithm [38] and
STFT-GESPAR for sparse signals [39]. While these techniques
work well in practice, they do not have theoretical guarantees.
In [36] and [43], a semidefinite relaxation-based STFT phase
retrieval algorithm, called STliFT (see Algorithm 1 below),
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Fig. 1. Sliding window interpretation of the STFT for N = 7, W = 5 and L = 4. The shifted window overlaps with the signal for 3 shifts, and hence R = 3
short-time sections are considered.

was proposed. In this work, we conduct extensive numerical
simulations and provide theoretical guarantees for STliFT. In
particular, we conjecture that STliFT can recover most non-
vanishing signals (up to a global phase) from their STFT
magnitude if adjacent short-time sections differ in at most half
the indices (Conjecture IV.1). When this condition is satis-
fied, we argue that one can super-resolve (i.e., discard high
frequency measurements) and reduce the number of measure-
ments to (4 + o(1))N , where N is the length of the complex
signal. Therefore, STliFT recovers most non-vanishing signals
uniquely, efficiently and robustly, using an order-wise optimal
number of phaseless measurements.

We prove this conjecture for the setup in which the exact
knowledge of a small portion of the underlying signal is avail-
able (Theorem IV.1). For particular choices of STFT param-
eters, this portion vanishes asymptotically, due to which this
setup is asymptotically reasonable. We also prove this conjec-
ture for the case in which adjacent short-time sections differ in
only one index (Theorem IV.2). We then extend these results
to incorporate sparse signals which have a limited number of
consecutive zeros (Corollary IV.1).

The rest of the paper is organized as follows. In Section 2, we
mathematically formulate STFT phase retrieval and establish
our notation. We present uniqueness guarantees in Section 3.
Section 4 considers the STliFT algorithm and provides recovery
guarantees. Numerical simulations are presented in Section 5.
Section 6 concludes the paper.

II. PROBLEM SETUP

Let x = (x[0], x[1], . . . , x[N − 1])T be a signal of length N
and w = (w[0], w[1], . . . , w[W − 1])T be a window of length
W . The STFT of x with respect to w, denoted by Yw, is
defined as:

Yw[m, r] =
N−1∑
n=0

x[n]w[rL− n]e−i2πmn
N (1)

for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R− 1, where the parameter
L denotes the separation in time between adjacent short-time
sections and the parameter R =

⌈
N+W−1

L

⌉
denotes the number

of short-time sections considered.

The STFT can be interpreted as follows: Suppose wr denotes
the signal obtained by shifting the flipped window w by rL
time units (i.e., wr[n] = w[rL− n]) and ◦ is the Hadamard
(element-wise) product operator. The rth column of Yw, for
0 ≤ r ≤ R− 1, corresponds to the N point DFT of x ◦wr. In
essence, the window is flipped and slid across the signal (see
Figure 1 for a pictorial representation), and Yw corresponds to
the Fourier transform of the windowed signal recorded at regu-
lar intervals. This interpretation is known as the sliding window
interpretation.

Let Zw be the N ×R measurements corresponding to
the magnitude-square of the STFT of x with respect to w
so that Zw[m, r] = |Yw[m, r]|2. Let Wr, for 0 ≤ r ≤ R−
1, be the N ×N diagonal matrix with diagonal elements
(wr[0], wr[1], . . . , wr[N − 1]). STFT phase retrieval can be
mathematically stated as:

find x (2)

subject to Zw[m, r] = |〈fm,Wrx〉|2
for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R− 1, where fm is the con-
jugate of the mth column of the N point DFT matrix and 〈., .〉
is the inner product operator. In fact, STFT phase retrieval can
be equivalently stated by only considering the measurements
corresponding to 0 ≤ m ≤ M − 1 and 0 ≤ r ≤ R− 1, for any
M satisfying 2W ≤ M ≤ N (see Section VII for details).
This equivalence significantly reduces the number of measure-
ments considered when W � N , which is typically the case in
practical methods.

We use the following definitions: A signal x is said to be
non-vanishing if x[n] �= 0 for all 0 ≤ n ≤ N − 1. Similarly, a
window w is said to be non-vanishing if w[n] �= 0 for all 0 ≤
n ≤ W − 1. Further, a signal x is said to be sparse if it is not
non-vanishing, i.e., x[n] = 0 for at least one 0 ≤ n ≤ N − 1.

III. UNIQUENESS GUARANTEES

In this section, we review existing results regarding the
uniqueness of STFT phase retrieval and present our uniqueness
guarantees. The results are summarized in Table I.

In STFT phase retrieval, the global phase of the signal can-
not be determined due to the fact that signals x and eiφx, for
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TABLE I
UNIQUENESS RESULTS FOR STFT PHASE RETRIEVAL

any φ, always have the same STFT magnitude regardless of the
choice of {w, L}. In contrast, in classic phase retrieval, signals
which differ from each other by a global phase, time-shift and/
or conjugate-flip (together called trivial ambiguities) cannot be
distinguished from each other as they have the same Fourier
magnitude [12], [17], [21].

Observe that L < W is a necessary condition in order to
be able to uniquely identify most signals. If L > W , then
the STFT magnitude does not contain any information from
some locations of the signal. When L = W , adjacent short-
time sections do not overlap and hence STFT phase retrieval
is equivalent to a series of non-overlapping instances of clas-
sic phase retrieval. Since there is no way of determining the
relative phase, time-shift or conjugate-flip between the win-
dowed signals corresponding to the various short-time sections,
most signals cannot be uniquely identified. For example, sup-
pose {w, L} is chosen such that L = W = 2 and w[n] = 1
for all 0 ≤ n ≤ W − 1. Consider the signal x1 = (1, 2, 3)T

of length N = 3. Signals x1 and x2 = (1,−2,−3)T have the
same STFT magnitude. In fact, more generally, signals x1 and
(1, eiφ2, eiφ3)T , for any φ, have the same STFT magnitude.

A. Non-vanishing Signals

For some specific choices of {w, L}, it has been shown that
all non-vanishing signals can be uniquely identified from their
STFT magnitude up to a global phase. In [39], it is proven that
the STFT magnitude uniquely identifies non-vanishing signals
up to a global phase for L = 1 if the window w is chosen such
that the N point DFT of (|w[0]|2, |w[1]|2, . . . , |w[N − 1]|2) is
non-vanishing, 2 ≤ W ≤ N+1

2 and W − 1 is coprime with N .
In [37], the authors prove that if the first L samples are known
a priori, then the STFT magnitude can uniquely identify non-
vanishing signals for any L if the window w is chosen such
that it is non-vanishing and 2L ≤ W ≤ N

2 .
In this work, we prove the following result for non-vanishing

signals:
Theorem III.1: Almost all non-vanishing signals can be

uniquely identified (up to a global phase) from their STFT
magnitude if {w, L} satisfy

(i) w is non-vanishing

(ii) L < W ≤ N
2 .

Proof: The proof is based on a technique commonly
known as dimension counting. The outline is as follows (see
Section VIII for details):

Consider the short-time sections r and r + 1. Since adjacent
short-time sections overlap (due to L < W ), there exists at least
one index, say n0, where both x ◦wr and x ◦wr+1 have non-
zero values.

Since W ≤ N
2 , there can be at most 2W distinct windowed

signals x ◦wr (up to a phase) that have the same Fourier mag-
nitude [14]. Consequently, |x[n0]| is restricted to 2W values by
the rth column of the STFT magnitude (let Sr denote the set
of these values). Similarly, |x[n0]| is restricted to 2W values by
the r + 1th column of the STFT magnitude (denote the set of
these values by Sr+1).

By construction, Sr ∩ Sr+1 �= φ as the STFT magnitude is
generated by an underlying signal x0, i.e., |x0[n0]| ∈ Sr ∩
Sr+1. Using Lemma VIII.1 and Theorem VIII.1, we show that,
for almost all non-vanishing signals, Sr ∩ Sr+1 has cardinal-
ity one. In other words, x ◦wr is uniquely identified (up to a
phase) almost surely.

Since adjacent short-time sections overlap, non-vanishing
signals are uniquely identified up to a global phase from the
knowledge of x ◦wr (up to a phase) for 0 ≤ r ≤ R− 1 if w is
non-vanishing. �

B. Sparse Signals

While the aforementioned results provide guarantees for
non-vanishing signals, they do not say anything about sparse
signals. Reconstruction of sparse signals involves certain chal-
lenges which are not encountered in the reconstruction of
non-vanishing signals.

The following example is provided in [39] to show that the
time-shift ambiguity cannot be resolved for some classes of
sparse signals and some choices of {w, L}: Suppose {w, L} is
chosen such that L ≥ 2, W is a multiple of L and w[n] = 1 for
all 0 ≤ n ≤ W − 1. Consider a signal x1 of length N ≥ L+ 1
such that it has non-zero values only within an interval of the
form [(t− 1)L+ 1, (t− 1)L+ L− p] ⊂ [0, N − 1] for some
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integers 1 ≤ p ≤ L− 1 and t ≥ 1. The signal x2 obtained by
time-shifting x1 by q ≤ p units (i.e., x2[i] = x1[i− q]) has the
same STFT magnitude. The issue with this class of sparse sig-
nals is that the STFT magnitude is identical to the Fourier
magnitude because of which the time-shift and conjugate-flip
ambiguities cannot be resolved.

It is also shown that some sparse signals cannot be uniquely
recovered even up to the trivial ambiguities for some choices
of {w, L} using the following example: Consider two non-
overlapping intervals [u1, v1], [u2, v2] ⊂ [0, N − 1] such that
u2 − v1 > W , and take a signal x1 supported on [u1, v1] and
x2 supported on [u2, v2]. The magnitude-square of the STFT of
x1 + x2 and of x1 − x2 are equal for any choice of L. The dif-
ficulty with this class of sparse signals is that the two intervals
with non-zero values are separated by a distance greater than W
because of which there is no way of establishing relative phase
using a window of length W .

These examples establish the fact that sparse signals are
harder to recover than non-vanishing signals in this setup.
Since the aforementioned issues are primarily due to a large
number of consecutive zeros, the uniqueness guarantees for
non-vanishing signals have been extended to incorporate sparse
signals with limits on the number of consecutive zeros. In [37],
it was shown that if L consecutive samples, starting from the
first non-zero sample, are known a priori, then the STFT mag-
nitude can uniquely identify signals with less than W − 2L
consecutive zeros for any L if the window w is chosen such
that it is non-vanishing and 2L ≤ W ≤ N

2 .
Below, we extend Theorem III.1 to prove the following result

for sparse signals:
Corollary III.1: Almost all sparse signals with less than

min{W − L,L} consecutive zeros can be uniquely identi-
fied (up to a global phase and time-shift) from their STFT
magnitude if {w, L} satisfy

1) w is non-vanishing
2) L < W ≤ N

2 .

Proof: The min{W − L,L} bound on consecutive zeros
ensures the following: For sufficient pairs of adjacent short-time
sections, there is at least one index among the overlapping and
non-overlapping indices respectively, where the underlying sig-
nal has a non-zero value. We refer the readers to Section IX for
details. �

IV. RECOVERY ALGORITHMS

The classic alternating projection algorithm to solve phase
retrieval [9] has been adapted to solve STFT phase retrieval
by Griffin and Lim [38]. To this end, STFT phase retrieval is
reformulated as the following least-squares problem:

min
x

R−1∑
r=0

N−1∑
m=0

(
Zw[m, r]− |〈fm,Wrx〉|2

)2

. (3)

The Griffin-Lim (GL) algorithm attempts to minimize this
objective by starting with a random initialization and imposing
the time domain and STFT magnitude constraints alternately
using projections. The objective is shown to be monotonically
decreasing as the iterations progress. An important feature of

Algorithm 1. STliFT

Input: STFT magnitude measurements Zw[m, r] for 1 ≤ m ≤
M and 0 ≤ r ≤ R− 1, {w, L}.
Output: Estimate x̂ of the underlying signal x0.

• Obtain X̂ by solving:

minimize trace(X) (4)

subject to Zw[m, r] = trace(W�
rfmf�mWrX)

X � 0

for 1 ≤ m ≤ M and 0 ≤ r ≤ R− 1.
• Return x̂, where x̂x̂� is the best rank-one approximation

of X̂.

the GL algorithm is its empirical ability to converge to the
global minimum when there is substantial overlap between
adjacent short-time sections. However, no theoretical recovery
guarantees are available. To establish such guarantees, we rely
on a semidefinite relaxation approach.

A. Semidefinite Relaxation-Based Algorithm

Semidefinite relaxation has enjoyed considerable success in
provably and stably solving several quadratic-constrained prob-
lems [40]–[42]. The steps to formulate such problems as a
semidefinite program (SDP) are as follows: (i) Embed the prob-
lem in a higher dimensional space using the transformation
X = xx�, a process which converts the problem of recovering a
signal with quadratic constraints into a problem of recovering a
rank-one matrix with affine constraints. (ii) Relax the rank-one
constraint to obtain a convex program.

If the convex program has a unique solution X0 = x0x
�
0,

then x0 is the unique solution to the quadratic-constrained prob-
lem (up to a global phase). Many recent results in related prob-
lems like generalized phase retrieval [42] and phase retrieval
using random masks [28], [29] suggest that one can pro-
vide conditions, which when satisfied, ensure that the convex
program has a unique solution X0 = x0x

�
0.

A semidefinite relaxation-based STFT phase retrieval algo-
rithm, called STliFT, was explored in [36] and [43]. The details
of the algorithm are provided in Algorithm 1. In the follow-
ing, we develop conditions on {x0,w, L} which ensure that
the convex program (4) has X0 = x0x

�
0 as the unique solu-

tion. Consequently, under these conditions, STliFT uniquely
recovers the underlying signal up to a global phase.

Based on extensive numerical simulations, we conjecture the
following:

Conjecture IV.1: The convex program (4) has a unique
solution X0 = x0x

�
0, for most non-vanishing signals x0, if

(i) w is non-vanishing
(ii) 2L ≤ W ≤ N

2
(iii) 4L ≤ M ≤ N .

The number of phaseless measurements considered can be
calculated as follows: The total number of short-time sections
is �N+W−1

L . For each short-time section, M = 4L phase-
less measurements are sufficient. Hence, the total number of
phaseless measurements is �N+W−1

L  × 4L ≤ 4 (N +W ) +
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2W . Consequently, when W = o(N), this number is (4 +
o(1))N , which is order-wise optimal. In fact, in generalized
phase retrieval, it is conjectured that (4− o(1))N phaseless
measurements are necessary [45].

The proof techniques used in [28] and [42] are not applicable
in the STFT setup. In [28] and [42], the measurement vectors
are chosen from a random distribution such that they satisfy the
restricted isometry property. Furthermore, the randomness in
the measurement vectors is used to construct approximate dual
certificates based on concentration inequalities. In the STFT
setup, testing whether the given measurement vectors satisfy
the restricted isometry property is difficult. Also, due to the lack
of randomness in the measurement vectors, a different approach
is required to construct dual certificates.

In the following, we develop a proof technique for the STFT
setup, and use it to prove Conjecture IV.1, with additional
assumptions.

Theorem IV.1: The convex program (4) has a unique feasible
matrix X0 = x0x

�
0, for almost all non-vanishing signals x0, if

(i) w is non-vanishing
(ii) 2L ≤ W ≤ N

2
(iii) 4L ≤ M ≤ N
(iv) x0[n] for 0 ≤ n ≤ � L

2 � is known a priori.

Proof: See Section X. �
While it is sufficient to show that (4) has a unique solution

X0 = x0x
�
0, observe that Theorem IV.1. ensures that (4) has

a unique feasible matrix. This is a stronger condition, and as
a consequence, the choice of the objective function does not
matter in the noiseless setting. While this might suggest that the
requirements of the setup are strong, we argue that it is not the
case. In fact, this phenomenon is also observed in generalized
phase retrieval (Section 1.3 in [42]) and phase retrieval using
random masks (Theorem 1.1 in [28]).

Theorem IV.1 assumes prior knowledge of the first �L
2  sam-

ples, i.e., half of the second short-time section is required to be
known a priori. This is not a lot of prior information if W � N ,
which is typically the case. When W = o(N), the fraction of
the signal that is required to be known a priori is less than W

N ,
which tends to 0 as N → ∞.

Theorem IV.2: The convex program (4) has a unique feasible
matrix X0 = x0x

�
0, for almost all non-vanishing signals x0, if

(i) w is non-vanishing
(ii) 2 ≤ W ≤ N

2
(iii) 4 ≤ M ≤ N
(iv) L = 1.

Proof: This is a direct consequence of Theorem IV.1. The
value of |x0[0]| (and hence x0[0], without loss of generality) can
be inferred from the STFT magnitude if L = 1. �

When L = 1, the number of phaseless measurements is
4(N +W ), which is again order-wise optimal. For exam-
ple, when W = 2, at most 4N + 8 phaseless measurements
are considered. Unlike Theorem IV.1, no prior information is
necessary.

Theorems IV.1 and IV.2 can be seamlessly extended to
incorporate sparse signals:

Corollary IV.1: The convex program (4) has a unique feasi-
ble matrix X0 = x0x

�
0, for almost all sparse signals x0 which

have at most W − 2L consecutive zeros, if

(i) w is non-vanishing
(ii) 2L ≤ W ≤ N

2
(iii) 4L ≤ M ≤ N
(iv) Either L = 1 or x0[n] for i0 ≤ n < i0 + L is known a

priori, where i0 is the smallest index such that x0[i0] �= 0.

Proof: See Section X. �

B. Noisy Setting

In practice, the measurements are contaminated by additive
noise, i.e., the measurements are of the form

Zw[m, r] = ‖〈fm,Wrx〉‖2 + z[m, r]

for 1 ≤ m ≤ M and 0 ≤ r ≤ R− 1, where zr =
(z[0, r], z[1, r], . . . , z[M − 1, r])T is the additive noise
corresponding to the rth short-time section and 4L ≤ M ≤ N .
STliFT, in the noisy setting, can be implemented as follows:
Suppose ‖zr‖2 ≤ η for all 0 ≤ r ≤ R− 1. The constraints in
the convex program (4) can be replaced by

M∑
m=1

(Zw[m, r]− trace(W�
r fmf�mWrX))

2 ≤ η2 (5)

for 0 ≤ r ≤ R− 1. We recommend the use of trace minimiza-
tion as the objective function. Numerical simulations strongly
suggest that STliFT can recover most non-vanishing signals sta-
bly in the noisy setting under certain conditions. The details of
the simulations are provided in the following section.

V. NUMERICAL SIMULATIONS

In this section, we demonstrate the empirical abilities of
STliFT using numerical simulations.

In the first set of simulations, we evaluate the performance of
STliFT as a function of window and shift lengths. We choose
N = 32, and vary {L,W}. For each choice of {L,W}, we con-
sider M = 4L phaseless measurements and perform 100 trials.
In every trial, we choose a random signal such that the values
in each location are drawn from an i.i.d. standard complex nor-
mal distribution. We select the window w such that w[n] = 1
for all 0 ≤ n ≤ W − 1. The probability of successful recovery
as a function of {L,W} is plotted in Fig. 2a.

Observe that STliFT successfully recovers the underlying
signal with very high probability when 2L ≤ W ≤ N

2 and
fails with very high probability when 2L > W . The choice
of {L,W} = {N

4 ,
N
2 } uses only six short-time sections and

STliFT recovers the underlying signal with very high probabil-
ity, which, given the limited success of semidefinite relaxation-
based algorithms in the Fourier phase retrieval setup, is very
encouraging.

In the second set of simulations, we evaluate the performance
of STliFT as a function of shift length and measurements per
short-time section. We choose N = 32 and W = 16, and vary
{L,M}. For each choice of {L,M}, we perform 100 trials as
before. The probability of successful recovery as a function of
{L,M} is plotted in Fig. 2b.

In the third set of simulations, we evaluate the performance
of STliFT in the noisy setting. We choose M = 2W , the rest of
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Fig. 2. Probability of successful recovery using STliFT in the noiseless setting (white region: success with probability 1, black region: success with probability 0).

Fig. 3. NMSE (dB) vs SNR (dB) using STliFT in the noisy setting for N = 32,
M = 2W .

the parameters are the same as the first set of simulations. The
normalized mean-squared error, given by

NMSE = min
|c|=1

||x0 − cx̂||2
||x0||2 , (6)

is plotted as a function of SNR in Fig. 3. The linear relationship
between them shows that STliFT stably recovers the underly-
ing signal in the presence of noise. Also, it can be observed
that the choices of {W,L} which correspond to significant over-
lap between adjacent short-time sections tend to recover signals
more stably compared to values of {W,L} which correspond to
less overlap, which is not surprising.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we considered the STFT phase retrieval prob-
lem. We showed that, if L < W ≤ N

2 , then almost all non-
vanishing signals can be uniquely identified from their STFT
magnitude (up to a global phase), and extended this result
to incorporate sparse signals which have less than min{W −
L,L} consecutive zeros.

For 2L ≤ W ≤ N
2 , we conjectured that most non-vanishing

signals can be recovered (up to a global phase) by a semidef-
inite relaxation-based algorithm (STliFT). When W = o(N),
through super-resolution, we reduced the number of phase-
less measurements to (4 + o(1))N . We proved this conjec-
ture for the setup in which the first

⌊
L
2 + 1

⌋
samples are

known, and for the case in which L = 1. We argued that
the additional assumptions are asymptotically reasonable when
W � N , which is typically the case in practical methods. We
then extended these results to incorporate sparse signals which
have at most W − 2L consecutive zeros.

Natural directions for future study include a proof of this
conjecture without the additional assumptions, and a stabil-
ity analysis in the noisy setting. Also, a thorough analysis of
the phase transition at 2L = W will provide a more complete
characterization of STliFT.

APPENDIX

VII. NUMBER OF PHASELESS MEASUREMENTS PER

SHORT-TIME SECTION

Throughout the paper, we use an N point DFT and W
satisfies W ≤ N

2 . In this setup, STFT phase retrieval can be
equivalently stated in terms of the short-time autocorrelation
aw:

find x (7)

subject to

aw[m, r] =

N−1−m∑
n=0

x[n]w[rL−n]x�[n+m]w�[rL−(n+m)]

for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R− 1.
The knowledge of the short-time autocorrelation is sufficient

for all the guarantees provided in this paper. Note that the rth
column of Zw and the rth column of aw are Fourier pairs.
Hence, for a particular r, if Zw[m, r] for 0 ≤ m ≤ N − 1 is
available, then aw[m, r] for 0 ≤ m ≤ N − 1 can be calculated
by taking an inverse Fourier transform.
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Lemma VII.1: Zw[m, r] for 0 ≤ m ≤ 2W − 2 is sufficient
to calculate aw[m, r] for 0 ≤ m ≤ N − 1.

Proof: If the window length is W , then aw has non-zero
values only in the interval 0 ≤ m ≤ W − 1 and N −W + 1 ≤
m ≤ N − 1. Let bw be the signal obtained by circularly shift-
ing aw by W − 1 rows, so that bw has non-zero values only
in the interval 0 ≤ m ≤ 2W − 2. Since the submatrix of the
N point DFT matrix obtained by considering the first 2W − 1
rows and columns is invertible (the Vandermonde structure
is retained), Zw[m, r] for 0 ≤ m ≤ 2W − 2 and bw[m, r] for
0 ≤ m ≤ 2W − 2 are related by an invertible matrix. Note that
aw[m, r] for 0 ≤ m ≤ N − 1 can be trivially calculated from
bw[m, r] for 0 ≤ m ≤ 2W − 2. �

Hence, for each short-time section, 2W phaseless measure-
ments are sufficient. Consequently, if the N point DFT is used
and 2W ≤ M ≤ N is satisfied, the affine constraints in (4) can
be rewritten in terms of aw and X as:

aw[m, r] =

N−1−m∑
n=0

X[n, n+m]w[rL− n]w[rL− (n+m)].

VIII. PROOF OF THEOREM III.1

The symbol ≡ is used to denote equality up to a global phase
and time-shift1. We say that two signals x1 and x2 are distinct
if x1 �≡ x2, and equivalent if x1 ≡ x2.

Let P denote the set of all distinct non-vanishing complex
signals of length N . P is a manifold of dimension 2N − 1, i.e.,
P locally resembles a real 2N − 1 dimensional space. This can
be seen as follows: In order to discard the global phase of non-
vanishing signals, we can assume that x[n0] is real and positive
at one index n0, without loss of generality. Hence, x[n0] can
take any value in R+, and x[n], for each 0 ≤ n ≤ N − 1 not
equal to n0, can take any value in R

2\{0, 0}, due to the one-to-
one correspondence between C and R

2.
Let Pc ⊂ P be the set of distinct non-vanishing complex

signals which cannot be uniquely identified from their STFT
magnitude if w is chosen such that it is non-vanishing and
W ≤ N

2 . We show that Pc has measure zero in P . In order to
do so, our strategy is as follows:

We first characterize Pc using Lemma VIII.1.. In particular,
we show that Pc is a finite union of images of continuously
differentiable maps from R

2N−2 to P . Since P is a manifold of
dimension 2N − 1, the following result completes the proof:

Theorem VIII.1 ([16], Chapter 5): If f : RN0 → R
N1 is

a continuously differentiable map, then the image of f has
measure zero in R

N1 , provided N0 < N1.
We use the following notation in this section: If g is a

signal of length lg , then g = (g[0], g[1], . . . , g[lg − 1])T such
that {g[0], g[lg − 1]} �= 0 and g[n] = 0 outside the interval
[0, lg − 1]. The vector g̃ denotes the conjugate-flipped version
of g, i.e., g̃ = (g[lg − 1]�, g[lg − 2]�, . . . , g[0]�)T . Let ur and
vr denote the smallest and largest index where the windowed
signal x ◦wr has a non-zero value respectively.

Lemma VIII.1: Consider two signals x1 �≡ x2 of length N
which have the same STFT magnitude. If the window w is
chosen such that it is non-vanishing and W ≤ N

2 , then, for

1For non-vanishing signals, there is no ambiguity due to time-shift.

each r, there exists signals gr and hr, of lengths lgr and lhr
respectively, such that

(i) x1 ◦wr ≡ gr � hr,x2 ◦wr ≡ gr � h̃r

(ii) lgr + lhr − 1 = vr − ur + 1
(iii) gr[lgr − 1] = 1 and {gr[0], hr[0], hr[lhr − 1]} �= 0

where � is the convolution operator. Further, there exists
at least one r such that

(iv) lhr ≥ 2, hr[0] is real and positive.

Proof: In Lemma 7.1 of [22], it is shown that if two non-
equivalent signals of length N have the same Fourier magnitude
and if the DFT dimension is at least 2N (this would imply
that they have the same autocorrelation), then there exists sig-
nals g and h, of lengths lg and lh respectively, such that one
signal can be decomposed as g � h and the other signal can
be decomposed as g � h̃. For each r, the rth column of the
STFT magnitude is equivalent to the Fourier magnitude of the
windowed signal x ◦wr. The DFT dimension is N , and the
windowed signal length is vr − ur + 1 (which is less than or
equal to N

2 ). Since, for every r, x1 ◦wr and x2 ◦wr have the
same Fourier magnitude, the aforementioned result proves (i).

The conditions (ii) and (iii) are properties of convolution (see
Lemma 7.1 of [22] for details), and therefore hold for every r.

Furthermore, if lhr = 1 for all 0 ≤ r ≤ R− 1, then x1 ≡ x2.
Hence, lhr ≥ 2 for at least one r. For this r, since eiφ1x1 and
eiφ2x2 have the same STFT magnitude, hr[0] can be assumed to
be real and positive without loss of generality. Hence, (iv) holds
for at least one r. �

Consequently, for each x ∈ Pc, condition (iv) of
Lemma VIII.1 holds for at least one r. Let Prlrlr+1

c ⊂ Pc

denote the set of signals for which lhr = lr ≥ 2 and
lh,r+1 = lr+1.2 It suffices to show that for each r, lr and

lr+1, there exists a set Qrlrlr+1
c ⊇ Prlrlr+1

c , which is the image
of a continuously differentiable map from R

2N−2 to P .
We first show the arguments for the L = W − 1 case as the

expressions are simple and provide intuition for the technique.
Then, we show the arguments for the L < W − 1 case.
(i)L = W − 1 :

The set Qrlrlr+1
c is constructed as follows: Consider the

variables {gr,hr,gr+1,hr+1} satisfying lhr = lr ≥ 2 and
lh,r+1 = lr+1, and x[n] for n ∈ [0, ur) ∪ (vr+1, N − 1]. The
map f = (f0, f1, . . . , fN−1)

T from these variables to P is the
following:

fn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x[n] for n ∈ [0, ur) ∪ (vr+1, N − 1]∑n−ur

m=0 gr[m]hr[n− ur −m]

for n ∈ [ur, vr]∑n−ur+1

m=0 gr+1[m]hr+1[n− ur+1 −m]

for n ∈ [ur+1, vr+1].

(8)

Observe that, for n = ur+1 = vr, fn has two definitions. The
variables can admit only those values for which the two defini-
tions have the same value. In the following, we show that there
is a one-to-one correspondence between the set of admissible
values of the variables and a subset of R2N−2.

2When r = R, we consider the short-time section r − 1 instead of r + 1.
We show the detailed calculations for the case when short-time section r + 1 is
considered, the arguments are symmetric for r − 1.
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Each x[n], for n ∈ [0, ur) ∪ (vr+1, N − 1], can be cho-
sen from ⊂ R

2. The set of {gr+1,hr+1} is a subset of
R

2(vr+1−ur+1+1), which can be seen as follows: gr+1[lg,r+1 −
1] = 1 is fixed (see Lemma VIII.1), there are vr+1 − ur+1 + 1
other terms and each can be chosen from ⊆ R

2.
For each choice of {gr+1,hr+1}, consider the set of

{gr,hr} excluding the terms hr[0] and hr[lhr − 1]: gr[lgr −
1] = 1 is fixed, there are vr − ur − 1 other terms and each
can be chosen from ⊆ R

2. Hence, this set is a subset of
R

2(vr−ur−1).
Since the short-time sections r and r + 1 overlap in the index

vr, gr � hr and gr+1 � hr+1 must be consistent in this index,
i.e., {gr,hr} must satisfy:

1

w[0]
hr[lhr − 1] =

1

w[W − 1]
gr+1[0]hr+1[0]. (9)

Due to Lemma VIII.1, gr � h̃r and gr+1 � h̃r+1 must also be
consistent in this index up to a phase, i.e., {gr,hr} must also
satisfy:

hr[0] ≡ w[0]

w[W − 1]
gr+1[0]h

�
r+1[lh,r+1 − 1]. (10)

Observe that ≡ is used in (10), due to the fact that the equality
is only up to a phase. However, hr[0] is real and positive (see
Lemma VIII.1), due to which (10) fixes hr[0].

Consequently, the set of admissible values of the vari-
ables, excluding hr[0] and hr[lhr − 1], is a subset of
R

2N−2, as 2(N − vr+1 + ur − 1 + vr+1 − ur+1 + 1 + vr −
ur − 1) = 2N − 2. For each point in this set, hr[0] and
hr[lhr − 1] are uniquely determined. It is straightforward to
check that the map f from this set to P is continuously differ-
entiable. Consequently, Qrlrlr+1

c is the image of a continuously
differentiable map from R

2N−2 to P .
(ii)L < W − 1 :
Consider the setup for which 2L ≥ W . The set of

{gr+1,hr+1}, as earlier, is a subset of R2(vr+1−ur+1+1).
The short-time sections r and r + 1 overlap in the interval

[ur+1, vr]. Let vr − ur+1 + 1 = T (the number of indices in
the overlapping interval). Due to 2L ≥ W , we have T = W −
L ≤ �W

2 �. Hence, for each choice of {gr+1,hr+1}, {gr,hr}
must satisfy:

n+ur+1−ur∑
m=0

1

wr[ur +m]
gr[m]hr[n+ ur+1 − ur −m]

=
n∑

m=0

1

wr+1[ur+1 +m]
gr+1[m]hr+1[n−m] (11)

for 0 ≤ n ≤ T − 1. In addition, {gr,hr} must also satisfy:

1

w[0]
hr[0] ≡

T−1∑
m=0

1

wr+1[ur+1 +m]
gr+1[m]hr+1[T − 1−m]

(12)

If lhr ≥ �W
2 �+ 1, then the T bilinear equations (11) can be

written as Ghr = c, where G has upper triangular structure
with unit diagonal entries, due to which rank(G) = T . The
set of gr is a subset of R2(lgr−1). For each choice of gr, the

terms {hr[lhr − T ], . . . , hr[lhr − 1]} are fixed by Ghr = c.
The constraint (12) fixes the value of hr[0], as earlier. Each of
the remaining (lhr − 1− T ) terms of hr may be chosen from
⊆ R

2.
Hence, the set of admissible values of the variables,

excluding {hr[lhr − T ], hr[lhr − T + 1], . . . , hr[lhr − 1]}
and hr[0], is a subset of R

2N−2, due to the fact that
2(N − vr+1 + ur − 1 + vr+1 − ur+1 + 1 + vr − ur − T ) =
2N − 2 (as lgr + lhr − 1 = vr − ur + 1). For each point in
this set, hr[0] and {hr[lhr − T ], . . . , hr[lhr − 1]} are uniquely
determined. The rest of the arguments are identical to those of
L = W − 1.

If lgr ≥ �W
2 �+ 1 instead, then the bilinear equations (11)

can be equivalently written as Hgr = c, the same arguments
may be applied to draw the same conclusion. For the setup with
2L > W , the same arguments hold for the short-time sections r
and r + t, where t is the largest integer such that the short-time
sections r and r + t overlap (this ensures T ≤ �W

2 �).

IX. Proof of Corollary III.1

We now extend Theorem III.1 to incorporate sparse signals.
Let PS denote the set of all distinct complex signals of length
N with a support S. Here, S is a binary vector of length N ,
such that x[n] �= 0 whenever S[n] = 1 and x[n] = 0 whenever
S[n] = 0. Further, S has less than min{L,W − L} consecutive
zeros.

Let PS
c ⊂ PS denote the set of signals which cannot be

uniquely identified from their STFT magnitude if w is chosen
such that it is non-vanishing and W ≤ N

2 . We show that PS
c has

measure zero in PS .
In the proof of Theorem III.1, in order to show dimension

reduction, we used the fact that for sufficient pairs of adjacent
short-time sections r and r + 1, the following holds:

(i) There is at least one index in the non-overlapping indices
[ur, ur+1 − 1] or [vr + 1, vr+1] where the signals x1 and
x2 have a non-zero value. This ensures that hr[0] is not
constrained by {gr+1,hr+1} in general. This condition
can be ensured by imposing the constraint that the sparse
signal cannot have L consecutive zeros.

(ii) There is at least one index in the overlapping indices
[ur+1, vr] where the signals x1 and x2 have a non-
zero value. This ensures that hr[0] is constrained by
{gr+1,hr+1} (10) for signals which cannot be uniquely
identified by their STFT magnitude. This condition can be
ensured by imposing the constraint that the sparse signal
cannot have W − L consecutive zeros.

The only difference in the proof is the following: Unlike in
the case of non-vanishing signals, there is time-shift ambiguity.
Hence, the constraint (12) is replaced by:

1

w[0]
hr[0] ≡

n∑
m=0

1

wr+1[ur+1 +m]
gr+1[m]hr+1[n−m]

(13)

for some 0 ≤ n ≤ T − 1. This fixes the value of hr[0] to one of
at most T values, due to which there is a dimension reduction.
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X. Proof of Theorem IV.1

We first show the arguments for the case 2W ≤ M ≤ N as
the expressions are simple and provide intuition. Then, we show
the arguments for 4L ≤ M < 2W .

(i)2W ≤ M ≤ N :
The affine constraints in (4) can be rewritten as (see

Section VII):

aw[m, r] =
N−1−m∑

n=0

X[n, n+m]w[rL− n]w[rL− (n+m)]

The proof strategy is as follows: We begin by focusing
our attention on short-time section r = 1. We show that the
prior information available, along with the affine autocorre-
lation measurements corresponding to r = 1 and the positive
semidefinite constraint, will ensure that every feasible matrix
of (4) satisfies X[n,m] = x0[n]x

�
0[m] for 0 ≤ n,m ≤ L. We

then apply this argument incrementally, i.e., we show that
the affine measurements corresponding to short-time section
r, along with the entries of X uniquely determined and the
positive semidefinite constraint, will ensure that X[n,m] =
x0[n]x

�
0[m] for ur ≤ n,m ≤ vr, where ur and vr denote the

smallest and largest index where wr has a non-zero value
respectively. Consequently, the entries along the diagonal and
the first W − L off-diagonals of every feasible matrix of (4)
match the entries along the diagonal and the first W − L off-
diagonals of the matrix x0x

�
0. Since the entries are sampled

from a rank one matrix with non-zero diagonal entries (i.e.,
x0x

�
0), there is exactly one positive semidefinite completion,

which is the rank one completion x0x
�
0 [50].

Let s0 = (x0[0], x0[1], . . . , x0[L])
T be a length L+ 1 sub-

signal of x0, and S be the (L+ 1)× (L+ 1) submatrix of
X corresponding to the first L+ 1 rows and columns. We
now show that S = s0s

�
0 is the only feasible matrix under the

constraints of (4).
Since x0[n] for 0 ≤ n ≤ � L

2 � is known a priori, we have
S[n,m] = x0[n]x

�
0[m] for 0 ≤ n,m ≤ � L

2 �. Let A(S) = c
denote these constraints due to prior information, along with
the affine constraints corresponding to r = 1. In particular,
A(S) = c denotes the following set of constraints:

S[n,m] = x0[n]x
�
0[m] for 0 ≤ n,m ≤ � L

2
�,

aw[m, 1] =
L−m∑
n=0

S[n, n+m]w[L− n]w�[L− (n+m)].

For each feasible matrix S, these set of measurements fix
(i) the � L

2 + 1 � × ⌊
L
2 + 1

⌋
submatrix, corresponding to the

first � L
2 + 1 � rows and columns, of S (ii) the appropriately

weighted sum along the diagonal and each off-diagonal of S
(2L ≤ W is implicitly used here).

Lemma X.1: If S0 = s0s
�
0 satisfies A(S) = c, then it is the

only positive semidefinite matrix which satisfies A(S) = c.

Proof: Let T be the set of Hermitian matrices of the form

T = {S = s0v
� + vs�0 : v ∈ C

n}
and T⊥ be its orthogonal complement. The set T may be inter-
preted as the tangent space at s0s�0 to the manifold of Hermitian

matrices of rank one. Influenced by [42], we use ST and ST⊥

to denote the projection of a matrix S onto the subspaces T and
T⊥ respectively.

Standard duality arguments in semidefinite programming
show that the following are sufficient conditions for S0 = s0s

�
0

to be the unique optimizer of (4):
(i) Condition 1: S ∈ T and A(S) = 0 ⇒ S = 0.

(ii) Condition 2: There exists a dual certificate D in the range
space of A� obeying: Ds0 = 0
rank(D) = L
D � 0.

The proof of this result is based on KKT conditions, and can
be found in any standard reference on semidefinite program-
ming (for example, see [51]).

We first show that Condition 1 is satisfied. The set of con-
straints in A(S) = 0 due to prior information fix the entries
of the first � L

2 + 1 � rows and columns of S to 0. Since S =
s0v

� + vs�0 for some v = (v[0], v[1], . . . , v[L])T (due to S ∈
T ), we infer that v[n] = icx0[n] for 0 ≤ n ≤ � L

2 �, for some
real constant c. Indeed, the equations of the form s0[n]v[n] �
+v[n]s0[n]� = 0 imply v[n] = icnx0[n], for some real con-
stant cn. The equations s0[n]v

�[m] + v[n]s�0[m] = 0 imply
cn = cm.

The set of constraints in A(S) = 0 due to the measure-
ments corresponding to r = 1, along with v[n] = icx0[n] for
0 ≤ n ≤ � L

2 �, imply v[n] = icx0[n] for � L
2 + 1 � ≤ n ≤ L.

Hence, for S ∈ T , A(S) = 0 implies v = ics0, which in turn
implies S = −ics0s

�
0 + ics0s

�
0 = 0.

We next establish Condition 2. For simplicity of notation,
we consider the case where w[n] = 1 for 0 ≤ n ≤ W − 1.
For a general non-vanishing w, the same arguments hold
(the Toeplitz matrix considered is appropriately redefined with
weights).

The range space of A� is the set of all L+ 1× L+ 1 matri-
ces which are a sum of the following two matrices: The first
matrix can have any value in the � L

2 + 1 � × ⌊
L
2 + 1

⌋
sub-

matrix corresponding to the first � L
2 + 1 � rows and columns,

and has a value zero outside this submatrix (dual of the set of
constraints due to prior information). The second matrix has a
Toeplitz structure (dual of the measurements corresponding to
r = 1).

Suppose s1 is the vector containing the first � L
2 + 1 � entries

of s0 and s2 is the vector containing the remaining entries
of s0. Here, s1 corresponds to the locations where we have
knowledge of the entries and s2 corresponds to the locations
where the entries are not determined. Let L be a lower triangu-
lar � L

2  × � L
2 + 1 � Toeplitz matrix satisfying Ls1 + s2 = 0.

Such an L always exists if s1[0] is non-zero and the length of
s1 is greater than or equal to the length of s2. Let Λ be any
� L

2 + 1 � × � L
2 + 1 � positive semidefinite matrix with rank

� L
2 � satisfying Λs1 = 0. Again, such a Λ always exists (any

positive semidefinite matrix with eigenvectors perpendicular to
s1). Consider the following dual certificate:

D =

⎡
⎣
L�L+ Λ L�

L I� L
2 �

⎤
⎦ . (14)
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Clearly, D is in the range space of A�. Also, Ds0 = 0 by con-
struction. From the Schur complement, it is straightforward to
see that rank(D) = L and D � 0. �

We have shown that S0 = s0s
�
0 is the only positive semidef-

inite matrix which satisfies the prior information and the mea-
surements corresponding to r = 1. Redefine s0 and S such that
s0 = (x0[0], x0[1], . . . , x0[2L])

T is the 2L+ 1 length subsig-
nal of x and S is the (2L+ 1)× (2L+ 1) submatrix of X
corresponding to the first 2L+ 1 rows and columns.

We already have S[n,m] = x0[n]x
�
0[m] for 0 ≤ n,m ≤ L

from above. Let A(S) = c denote these constraints, along with
the affine constraints corresponding to r = 2. Due to 2L ≤ W ,
Lemma X.1 proves that S0 = s0s

�
0 is the only psd matrix which

satisfies the prior information and the measurements corre-
sponding to r = 1, 2. Applying this argument incrementally, the
entries along the diagonal and the first W − L off-diagonals of
every feasible matrix of (4) match the entries along the diagonal
and the first W − L off-diagonals of the matrix x0x

�
0.

Sparse signals: The arguments can be seamlessly extended
to incorporate sparse signals.

(i) The fact that there exists a unique positive semidefinite
completion once the diagonal and the first W − L off-diagonal
entries are sampled from x0x

�
0 holds when x0 has less than

W − L consecutive zeros.
(ii) Note that the length of s2 is at most L, as it corre-

sponds to the locations in the window where the entries are not
determined. Since we know x0[n] for i0 ≤ n < i0 + L a priori,
where i0 is the smallest index such that x0[i0] �= 0, the length of
s1 is W − L. Redefine s1 so that it corresponds to the locations
in the window where the entries are determined, starting from
the smallest index which has a non-zero value in order to ensure
s1[0] �= 0. If x0 has at most W − 2L consecutive zeros, then
the length of s1 is at least (W − L)− (W − 2L) = L. Hence,
a lower triangular Toeplitz matrix L, satisfying Ls1 + s2 = 0,
always exists.
(ii)4L ≤ M < 2W (super-resolution case):
Unlike in the previous case, we do not have the knowledge

of the autocorrelation of each short-time section. However, by
making optimal use of the additional redundancy due to the
increased overlap, we show the existence of a dual certificate
similar in nature to (14). As earlier, we begin by focusing our
attention on short-time section r = 1.

Let l = (l[0], l[1], . . . , l[L])T be a vector of length L+ 1,
such that (l[L], l[L− 1], . . . , l[0]) is the last row in (14). Let
l̂ = (l[0], l[1], . . . , l[N − 1])T be a vector of length N , obtained
by extending l. We show the existence of a vector l̂, from
which a vector l satisfying all the necessary conditions can be
obtained.

The range space of the dual certificate is the set of all
L+ 1× L+ 1 matrices which are a sum of the follow-
ing two matrices: The first matrix can have any value in
the � L

2 + 1 � × ⌊
L
2 + 1

⌋
submatrix corresponding to the first

� L
2 + 1 � rows and columns, and has a value zero outside this

submatrix (dual of the set of constraints due to prior informa-
tion). The second matrix has the form

∑M
m=1 αmW�

rfmf�mWr,
where αm is real-valued for each m (dual of the measurements
corresponding to r = 1). Consider an l̂ that satisfies the follow-
ing set of conditions:

(i) l[0] = 1, l[n] = l[N − n] = 0 for 1 ≤ n ≤ ⌈
L
2

⌉− 1
(ii)

∑m
n=0 x0[n]l[m− n] =

∑m
n=0 x0[n] � l[N −m+ n] =

0 for
⌊
L
2 + 1

⌋ ≤ m ≤ L

(iii) f�m l̂ = 0 for M + 1 ≤ m ≤ N .
These constraints together can be written as Al̂ = b. When

M ≥ 4�L
2 , the matrix A is square or wide, and almost always

(pseudo) invertible. This can be seen as follows: the determi-
nant of A is a polynomial function of the entries of x0, due
to which it is either always zero or almost surely non-zero. By
substituting x0[0] = 1 and x0[n] = 0 for n �= 0, it is straight-
forward to check that the determinant is non-zero. Hence, such
an l̂ almost always exists.

The vector l obtained by choosing the first L+ 1 entries
of this l̂ is used to construct the lower left and lower right
blocks of the dual certificate: (i) The lower right block is an
identity matrix. (ii) Ls1 + s2 = 0 is satisfied. (iii) Since b is
a real vector, l̂ satisfies l[n] = l[N − n]�. Therefore, l̂ is in
the range space of

∑M
m=1 αmfm where αm is real-valued, due

to which the resulting second matrix is in the range space of∑M
m=1 αmW�

rfmf�mWr.
The arguments are applied incrementally as earlier (with

M ≥ 4L, since L× L is the size of the lower right block, for
r > 1).
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